
\Rightarrow Use algorithm rather than memorizing equations

The algorithm (1) mole balance
Q1) Mole balance
(2) rate law
(3) Stoichiometry
(4) combine
(5) evaluate

$$
F_{A O}-F_{A}+\int^{V} r_{A} d V=\frac{d N_{A}}{d t}
$$

\forall apply this to the specific reactor in question
In terms of x

- Batch reactor (ODE)

$$
N_{A D} \frac{d X}{d \tau}=-r_{A} V
$$

- CSTR (algebraic equation)

$$
V=\frac{F_{A_{D}} X}{-r_{A}}
$$

- ppr (ode)
$F_{A O} \frac{d X}{d V}=-r_{A}$
- ppr (ode)

$$
F_{A O} \frac{d X}{d w}=-r_{A}^{\prime}
$$

(2) Rate law If $-r_{A}$ is given as $f(x)$ we can directly solve the design equations otherwise we need to convert the rate expression and make it a function of X
(3) stoichiometry

If $\quad r_{A} \neq f(x)$
say $-r_{A}=g(C)$ then
we need to use stoichiometry and write the rate law in terms of x
Liquid phase:

$$
\begin{aligned}
& C_{A}=C_{A_{O}}(1-x) \\
& C_{B}=C_{A_{O}}\left(\theta_{B}-\frac{b}{a} x\right)
\end{aligned}
$$

Gas phase:

$$
\left.C_{A}=C_{A 0} \frac{(1-x)}{(1+\epsilon x)} \frac{P}{P_{0}} \quad \text { constr } T\right)
$$

For PBRS: We also need to consider pressure drop along the length

$$
\frac{d P}{d w}=\frac{\alpha}{2 P}(1-\epsilon X), p=\frac{P}{P_{0}}
$$

(4) Combine

- mole balance
- rate law
- stoichiometry
-othe eq!. (like pressure drop) gives us a system of equations we must solve to obtain reactor volume.
(5) Evaluate/ solve

Gathering all the equations

The system of equations
obtained by combining can be solved

- analytically
- graphically
- numerically
- using software.

Figure 5-2 Algorithm for isothermal reactors.

Batch
Reactor
\Rightarrow Usually we are interested in calculating batch reaction time for a given X or X for a given batch reaction time.
$-r_{A}$ is now in terms of X

Consider ran: $2 A \rightarrow B+C$
Algorithm:
(1) Mole balance (constr. $V=v_{0}$)

$$
\begin{aligned}
& N_{A_{O}} \frac{d X}{d t}=-r_{A} V_{0} \\
& C_{A_{O}}=\frac{N_{A O}}{V_{O}} \\
& \therefore \quad \frac{d X}{d t}=\frac{-r_{A}}{C_{A O}}
\end{aligned}
$$

(2) rate law

$$
-r_{A}=k_{2} C_{A}^{2}
$$

(3) Stoichio metry

$$
\begin{aligned}
C_{A} & =C_{A_{0}}(1-x) \\
\therefore-r_{A} & =k_{2} C_{A}^{2}(1-x)^{2}
\end{aligned}
$$

(4) Combine

$$
\frac{d x}{d t}=k_{2} C_{A_{0}}(1-x)^{2}
$$

Evaluate $\Rightarrow t=\frac{1}{k_{2} C_{0}} \int_{0}^{x} \frac{d x}{(1-x)^{2}}$
$\begin{aligned} & \text { For } \\ & \text { order reaction }\end{aligned} 2^{\text {nd }} \quad t=\frac{1}{k_{2} c_{A_{0}}} \frac{x}{1-x}$

Batch reaction time is just one component in batch cycle time.

Damköhler no

$$
D_{a}=\frac{-r_{A O} V}{F_{A_{O}}}
$$

$1^{\text {st }}$ and $2^{\text {rd }}$ order Da

$$
\begin{aligned}
& V=\frac{F_{A_{0}} x}{k C_{A}^{2}}=\frac{v_{0} C_{A_{O}} x}{k C_{A_{0}}^{2}(1-x)^{2}} \\
& \tau=\frac{x}{k C_{A_{0}}(1-x)^{2}}
\end{aligned}
$$

or

$$
x=\frac{\left(1+2 k \tau c_{A_{0}}\right)-\sqrt{1+4 k \tau C_{A_{0}}}}{2 k \in C_{A_{0}}}
$$

Da gives quick estimate of degree of conversion that can be obtained in continuous flow reactors.

$$
D_{a}=\frac{\text { rate of reaction at entry }}{\text { Entering flow rate of } A}
$$

$D a_{1}=$ ck; $D a_{2}=$ CK $C_{A_{0}}$

If $D a<1$, then $x<0.1$
If $\mathrm{Da}>10$, then $x>0.9$

CSTR in series

First order For list order reaction reaction

$$
\begin{aligned}
& \text { reaction } \\
& x=1-\frac{1}{\left(1+D a_{1}\right)^{n}} \quad X_{1}=\frac{C_{A_{1}}}{C_{A_{0}}}=\frac{1}{1+\xi_{1} K_{1}} \Rightarrow C_{A_{1}}=\frac{C_{A_{0}}}{1+\xi k}
\end{aligned}
$$

For $2^{\text {nd }}$ reactor

$$
\begin{aligned}
V_{2} & =\frac{F_{A_{1}}-F_{A_{2}}}{-r_{A_{2}}}=\frac{v_{0}\left(C_{A_{1}}-C_{A_{2}}\right)}{k_{2} C_{A_{2}}} \\
C_{A_{2}} & =\frac{C_{A_{1}}}{1+r_{2} k_{2}} \\
\Rightarrow C_{A_{2}} & =\frac{C_{A_{0}}}{\left(1+r_{2} k_{2}\right)\left(1+r_{1} k_{1}\right)}
\end{aligned}
$$

If the reactors are equal sized and operate at same T

$$
C_{A_{2}}=C_{A_{0}} /(1+r k)^{2}=\frac{C_{A_{0}}}{\left(1+D_{a_{1}}\right)^{2}}
$$

For n reactors in series

$$
x=1-\frac{1}{\left(1+D a_{1}\right)^{n}}
$$

For large $D_{a_{1}}$
\Rightarrow Small no. of reactors are sufficient to achieve high conversion
For small Da,
\Rightarrow increasing no. of reactors increases Conversion significantly.

Plug flow reactors

Must use the differential form if there is significant pressure drop.

Mole balance

$$
\begin{aligned}
& F_{A_{0}} \frac{d X}{d V}=-r_{A} \\
& \left.V=F_{A 0} \int_{0}^{X} \frac{d X}{-r_{A}} \cdots\right\}_{\text {drop }}^{\text {No }} \begin{array}{l}
\text { pressure }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { nd order liquid phase PFR } v=v_{0} \\
& \text { reaction } \\
& 2 A \rightarrow \text { products } \\
& -r_{A}=k C_{A}{ }^{2} \\
& \frac{d x}{d V}=\frac{k C_{A}{ }^{2}}{F_{A O}} \\
& C_{A}=C_{A_{0}}(1-x) \\
& F_{A_{0}}=C_{A_{0}} v_{0} \\
& \therefore V=\frac{v_{0}}{k C_{A_{0}}} \int_{0}^{x} \frac{d x}{(1-x)^{2}} \\
& V=\frac{v_{0}}{k C_{A_{0}}}\left(\frac{x}{1-x}\right) \\
& X=\frac{\tau k C_{A_{0}}}{1+\tau k C_{A_{0}}}=\frac{D a_{2}}{1+D a_{2}} \\
& \text { gas phase: } \\
& \begin{array}{l}
\text { consider } \\
\text { changes in }
\end{array} \\
& \text { moles, } \\
& \text { Pressure, } \\
& \text { te mperature } \\
& \text { Gas phase PFR } \\
& v=v_{0}^{(1+\in X)} \underbrace{\left(\frac{T}{T_{0}}\right)}_{\text {Changing moles }} \underbrace{\left(\frac{P_{0}}{p}\right)}_{\text {Temp }} \\
& \text { For cons } P \& T \\
& v=v_{0}(1+\epsilon X)
\end{aligned}
$$

Pressure drop in reactors
liquid phase
\Rightarrow Ignore effect of pressure as Conc. not affected by P

For gas phase reactions
$C \propto P \Rightarrow$ must account for pressure drop.

Consider reaction in a $P B R$

$$
2 A \longrightarrow B+C
$$

Mole balance:
$F_{A_{0}} \frac{d x}{d w}=-r_{A}^{\prime}$
rate law:

$$
-r_{A}^{\prime}=k C_{A}^{2}
$$

Stoichiometry:

$$
C_{A}=C_{A_{0}} \frac{(1-x)}{(1+\epsilon x)}\left(\frac{P}{P_{d}}\left(\frac{T_{0}}{T}\right)\right.
$$

combine:

$$
\begin{aligned}
& \begin{array}{l}
\text { is othermal } \\
\text { reactor } T=T_{0}
\end{array} \quad \frac{d x}{d w}=\frac{h C_{A_{0}}}{v_{0}}\left(\frac{1-x}{1+\epsilon x}\right)^{2}\left(\frac{P}{P_{0}}\right)^{2} \\
& \Rightarrow \frac{d x}{d w}=f(x, P)
\end{aligned}
$$

Need equation for P

Flow through packed bed
only gas density varies with pressure

Ergun Equation

$$
\frac{d P}{d z}=\frac{-G}{\rho g_{c} D_{P}}\left(\frac{1-\phi}{\phi^{3}}\right)[\underbrace{\frac{150(1-\phi) \mu}{D_{P}}}_{\text {Term 1 }}+\underbrace{1.75 G}_{\text {Term 2 }}]
$$

P : pressure (kea)
$\phi:$ porosity $=\frac{\text { vol. of void }}{\text { bed volume }}$ $g_{c}: 1$
D_{p} : particle diameter (m)
μ : viscosity (kg/m-s)
G : superficial mass velocity

$$
=\rho u
$$

$$
\left(\mathrm{log} / \mathrm{m}^{2} \mathrm{~s}\right)
$$

ρ : density of gas $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
u : Superficial velocity (m / s) volumetric flow rate /(chs area)
Z : length of packed bed (m)

Various forms Packed bed reactors of Ergun equation:
$\beta_{0} \rightarrow$ constant depends on the properties of packed bed

$$
\frac{d P}{d z}=-\beta_{0}\left(\frac{P_{0}}{P}\right)\left(\frac{T}{T_{0}}\right) \frac{F_{T}}{F_{T 0}}
$$

In terms of weight of catalyst

$$
\frac{d P}{d W}=-\frac{\alpha}{2}\left(\frac{P_{0}}{P}\right)\left(\frac{T}{T_{0}}\right)\left(\frac{F_{T}}{F_{T 0}}\right)
$$

Use for multiple reactions

For single

$$
\begin{aligned}
& \text { reaction } \\
& \frac{F_{T}}{F_{0}}=1+\epsilon X
\end{aligned} \quad \frac{d P}{d W}=\frac{-\alpha}{2 P}\left(\frac{T}{T_{0}}\right)(1+\epsilon X)
$$

\Rightarrow Solve mole balance and the pressure drop equation simultaneously.

